
,

PHYSICAL REVIEW D, VOLUME 62, 123511
Dust-filled axially symmetric universes with a cosmological constant
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Following the recent recognition of a positive value for the vacuum energy density and the realization that
a simple Kantowski-Sachs model might fit classical tests of cosmology, we study the qualitative behavior of
three anisotropic and homogeneous models, Kantowski-Sachs, Bianchi type-I and Bianchi type-III universes,
with dust and a cosmological constant, in order to find out which are physically permitted. We find that these
models undergo isotropization up to the point that the observations will not be able to distinguish between
them and the standard model, except for the Kantowski-Sachs model (Vk0

,0) and for the Bianchi type-III
model (Vk0

.0) with VL0
smaller than some critical valueVLM

. Even if one imposes that the Universe should
be nearly isotropic since the last scattering epoch (z'1000), meaning that the Universe should have approxi-
mately the same Hubble parameter in all directions~considering the COBE 4-year data!, there is still a large
range for the matter density parameter compatible with Kantowski-Sachs and Bianchi type-III models ifuV0

1VL0
21u<d, for a very smalld. The Bianchi type-I model becomes exactly isotropic owing to our restric-

tions and we haveV01VL0
51 in this case. Of course, all these models approach locally an exponential

expanding state provided the cosmological constantVL.VLM
.

PACS number~s!: 98.80.Cq, 04.20.Jb, 98.80.Hw
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I. INTRODUCTION

Over the last five years, the issue of whether or not th
is a nonzero value for the vacuum energy density, or cos
logical constant, has been raised quite often. Indeed, the
sibility of a nonzero cosmological constantL has been en-
tertained several times in the past for theoretical a
observational reasons~the early history ofL as a paramete
in general relativity has been reviewed by@1#, @2#, and@3#!.
Recent supernova results@4,5# strongly support a positive
and possibly quite large cosmological constant. Even tak
the Hubble constant to be in the range 60–75 km/s/Mpc
possible to show@6# that the standard model of flat spa
with a vanishing cosmological constant is ruled out. In a v
nice review @7# it is argued that postulating a
VL-dominated model seems to solve a lot of problems
once. And again, in a quite recent review on the physics
cosmology of the cosmological constant, it is added that ‘‘
cent years have provided the best evidence yet that this
sive quantity does play an important dynamical role in
universe’’ @8#.

On the other hand, if the classical tests of cosmology
applied to a simple Kantowski-Sachs metric and the res
compared with those obtained for the standard model,
observations will not be able to distinguish between th
models if the Hubble parameters along the orthogonal di
tions are assumed to be approximately equal@9#. Indeed, as
@10# points out, the number of cosmological solutions whi
demonstrate exact isotropy well after the big bang origin
the Universe is a small fraction of the set of allowable so
tions of cosmological equations. It is therefore prudent
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take seriously the possibility that the Universe is expand
anisotropically. Note also that some shear free anisotro
models display a Friedmann-Lamaıˆtre-Robertson-Walker-
~FLRW!-like behavior, as is shown in@11#.

II. GLOBAL BEHAVIOR OF THE LÅ0 MODELS

Taking all this into consideration, we discuss the behav
of some homogeneous but anisotropic models with a
symmetry, filled with a pressureless perfect fluid~dust! and a
non-vanishing cosmological constant. For this, we will r
strict our study to the metric forms

ds252c2dt21a2~ t !dr21b2~ t !@du21 f k
2~u!df2#,

~2.1!

with the two scale factorsa(t) andb(t); k is the curvature
index of the 2-dimensional surfacedu21 f k

2(u)df2 and can
take the values 11,0,21, implying f k(u) equal to
sin(u), u, sinh(u), respectively, giving the following three
different metrics: Kantowski-Sachs, Bianchi type-I, and B
anchi type-III @12,13#.

Einstein equations for the metric~2.1!, for which the mat-
ter content is in the form of a perfect fluid and a cosmolo
cal term,L, are then as follows@12,13#:

2
ȧ

a

ḃ

b
1

ḃ2

b2
1

kc2

b2
58pGr1Lc2, ~2.2!

2
b̈

b
1

ḃ2

b2
1

kc2

b2
528pG

p

c
1Lc2,

~2.3!
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ä

a
1

b̈

b
1

ȧ

a

ḃ

b
528pG

p

c
1Lc2,

~2.4!

wherer is the matter density andp is the~isotropic! pressure
of the fluid. HereG is Newton’s gravitational constant andc
is the speed of light. If we consider a vanishing press
(p50), which is compatible with the present conditions f
the Universe, the last two equations take the form

2
b̈

b
1

ḃ2

b2
1

kc2

b2
5Lc2, ~2.5!

ä

a
1

b̈

b
1

ȧ

a

ḃ

b
5Lc2, ~2.6!

and Eq.~2.5! can easily be integrated to give

ḃ2

b2
5

M1

b3
2

kc2

b2
1

L

3
c2, ~2.7!

whereM1 is a constant of integration.
The Hubble parameters corresponding to the scale fac

a(t) andb(t) are defined by

Ha[ȧ/a and Hb[ḃ/b.

Using them to introduce the following dimensionless p
rameters, in analogy with what is usually done in FLR
universes, let us define

M1

b3Hb
2
[VM , ~2.8!

2
kc2

b2Hb
2
[Vk ~2.9!

and

Lc2

3Hb
2
[VL . ~2.10!

The conservation equation~2.7! can now be rewritten as

VM1Vk1VL51. ~2.11!

Now defining the dimensionless variabley5b/b0 where
b05b(t0) is the angular scale factor for the present age
the Universe, and using Eq.~2.11! ~taken fort5t0), one may
rewrite Eq.~2.7! as

ẏ56Hb0
AVM0S 1

y
21D1VL0

~y221!11, ~2.12!

where the density parameters, defined previously andHb
with zero subscript, denote as before these quantities a
12351
e
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present timet0. In this way, a number of independent param
eters have been reduced. Substituting Eq.~2.7! into Eq.~2.2!
gives

ȧ5

M r2M1

a

b
1

2

3
Lc2ab2

2AM1b2kc2b21
L

3
c2b4

, ~2.13!

where M r is a constant proportional to matter in the Un
verse:

M r58pGrab2. ~2.14!

Using the procedure above, Eq.~2.13! can be rewritten in the
form

Vr2VM12VL52
Ha

Hb
, ~2.15!

where

Vr5
M r

ab2Hb
2

. ~2.16!

From Eq.~2.2! one may define a matter density paramet
For this, we introduce the notion of the mean Hubble fac
H such that 3H5Ha12Hb . Also, for these models, the
shear scalars @13# is given by

s5
1

A3
~Ha2Hb!. ~2.17!

Thus, Eq.~2.2! may be rewritten@12# as

3H21
kc2

b2
58pGr1s21Lc2. ~2.18!

As in FLRW universes we call the critical matter densityrc
whenk50 andL50:

rc5
3H22s2

8pG
. ~2.19!

The matter density is generally defined asV5r/rc ; then,

V5
8pGr

3H22s2
[

8pGr

2HaHb1Hb
2 , ~2.20!

just like in FLRW models, and such thatV51 whenk50
andL50, and which is related toVr by

V5
Vr

112
Ha

Hb

. ~2.21!
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AlthoughVM is not the matter density parameter, it perform
the same important role. We emphasize the fact that if
one particular timeHa5Hb and VL51, then, by Eqs.
~2.11!, ~2.15!, and ~2.21!, 3V5Vr5VM52Vk , and if 0
,VL!1 andVM51, then2Vk5VL andV.1.

Introducing another dimensionless variablex5a/a0, Eq.
~2.13! takes the form

ẋ5Hb0

VM0

2
S 12

x

y
D 1VL0

~211xy2!1
Ha0

Hb0

yAVM0S 1

y
21D 1VL0

~y221!11

,

~2.22!

and its number of independent parameters was also redu
now at the expense of Eq.~2.15! taken for the present time
t5t0.

Now, we want to find the time dependence ofb(t) in a
qualitative way, starting from Eq.~2.12!. Since the model
universe will be defined only whereẏ2>0, as was previ-
ously done by@14# for FLRW models, the problem is re
duced to finding the zeros ofẏ, with yÞ0.

There are twoVL values which characterize two zones
distinct behavior for the scale factorb. Starting with condi-
tion ẏ50 one may obtain

VL0
5

~VM0
21!y2VM0

y32y
. ~2.23!

If we considerVL0
5VL0

(y) as a function ofy, then this
function presents a relative minimum and a maximum, wh

FIG. 1. Scale factors relation, that is, thex y dependence for the
three models Kantowski-Sachs (k51), Bianchi type-I (k50) and
Bianchi type-III (k521). We show the behavior ofx(y) when
VL0

,VLM
. Concretely we have for the Kantowski-Sachs mod

VM0
59 andVL0

51.5; for the Bainchi type-I modelVM0
52 and

VL0
521; for the Bainchi type-III modelVM0

51 and VL0

521.
12351
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we will denote byVLc
andVLM

, respectively. The relative

minimum depends onVM0
in the following way @14#: For

VM0
,1/2 we have

VLc
5

3VM0

2 H FA~VM0
21!2

VM0

2
211

12VM0

VM0
G 1/3

1
1

@A~VM0
21!2/VM0

2 211~12VM0
!/VM0

#1/3J
2~VM0

21!, ~2.24!

and forVM0
>1/2 the expression is

l

FIG. 2. Scale factors relation, that is, thex y dependence for the
three models Kantowski-Sachs (k51), Bianchi type-I (k50) and
Bianchi type-III (k521). We show the behavior ofx(y) when
VLM

,VL0
,VLc

. The particular values for the plotting are for th
Kantowski-Sachs modelVM0

52 and VL0
51.5; for the Bainchi

type-I model VM0
50.5 and VL0

50.5; for the Bianch type-III
modelVM0

50.2 andVL0
50.4.

FIG. 3. The Kantowski-Sachs model corresponds to the reg
above the straight line (Vk0

,0); the Bianchi type-III model corre-
sponds to the region below the straight line; (Vk0

.0); the straight
line represents the region for the Bianchi type-I model (Vk0

50).
The gray zone is physically forbidden because it does not reprod
the actual situation of the Universe. This zone is eliminated by
equationsx50, ~2.24!, and~2.25!.
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TABLE I. Density parameters and relative difference betweenHa and Hb for Kantowsky-Sachs and
Bianchi type-III ~B III ! models.

VM0
VL0

V01VL0
Vk0

DH/Ha

KS 1 &1.731028 115.631029 21.731028 21.631026

KS &2310215 1 116.7310216 22.0310215 21.431026

KS &0.317.031029 0.7 112.331029 27.031029 21.731026

KS 0.3 &0.617.031029 112.331029 27.031029 21.731026

B III 1 210210 *9.9310211 123.3310213 11.0310212 11.331026

B III *9.8310214 1210213 126.7310216 12.0310215 11.331026

B III *0.3210211 0.7 123.3310212 11.0310211 11.831026

B III 0.3 *0.7210211 123.3310212 11.0310211 11.831026
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VLc
523VM0

cosS u12p

3 D2~VM0
21!. ~2.25!

The relative maximum is done by

VLM
523VM0

cosS u14p

3 D2~VM0
21!, ~2.26!

whereu5cos21@(VM0
21)/VM0

#. These expressions are lim

iting zones of the (VL0
,VM0

) plane, whereẏ50 has three or

one solutions~for details see@14#!. The VLM
expression is

also defined forVM0
.1/2, but it has the meaning of a max

mum only forVM0
.1. TheVL0

less than or equal toVLM

imposes a recollapse of the scale factorb, while greater val-
ues produce inflexional behaviors forb. The VL0

values

greater than or equal toVLc
are physically ‘‘forbidden’’ be-

cause they do not reproduce the present Universe~see@14#!.
Obviously,VLM

,VLc
always.

Although we are considering anisotropic models, E
~2.12! for ẏ as a function ofVM0

is mathematically the sam
as Eq.~2! obtained by@14# for the homogeneous and isotro
pic FLRW models. From Eqs.~2.12! and ~2.22! one obtains
the differential equation

dx

dy
5

VM0

2 S 12
x

yD1VL0
~211xy2!1

Ha0

Hb0

VM0
~12y!1VL0

~y32y!1y
. ~2.27!

This equation automatically complies with the two co
servation equations~2.11! and ~2.15! evaluated att0. There
are some particular values of the parameters (VM0

,VL0
) for

which this equation has exact solutions. However, for
majority of the values of parameters, the solution has o
been obtained by numerical integration.

We may admit that at a certain moment of time, which
can take as the present timet0, the Hubble parameters alon
the orthogonal directions may be assumed to be appr
mately equal,Ha.Hb , even though we started with an a
isotropic geometry. This hypothesis has been considere
@9# for the case of a Kantowski-Sachs~KS! model. From this
study was derived the conclusion that the classical test
12351
.

e
ly

i-
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of

cosmology are not at present sufficiently accurate to dis
guish between a FLRW model and the KS model defined
that paper, with (Ha0

.Hb0
), except for small values ofb0.

Taking Ha0
5Hb0

for simplicity, one can then integrat
Eq. ~2.27! and find three different solutions, one for eachk
value. Figures 1 and 2 show the three kinds of behaviors
result of integration.

The behavior for the Kantowski-Sachs and Bianchi typ
III cases depends on theVL0

value. IfVL0
<VLM

, there will

be a maximum value fory,(ym), and since thenẏ(ym)50,
the slope of the curvex5x(y) will be infinite at that point.
Specifically, we haveẋ(ym)51` for the Kantowski-Sachs
model andẋ(ym)52` for the Bianchi type-III model, even
thoughx(ym) is finite. WhenVLM

,VL0
,VLc

, after x5y

51 is reached we find an almost linear relation between
two scale factorsx and y for the two models, while for the
Bianchi type-I model we havex5y for the present restric-
tions. So we see that for the KS model, the scale factora(t)
starts from infinity ifb(t) starts from zero. For the Bianch
type-I model, the scale factors are always proportional
even equal. In this situation we do not have an anisotro
model; in fact, we can easily prove that this model is isot
pic by a proper reparametrization of the coordinates. For
Bianchi type-III model, the scale factorb(t) never starts
from zero, but has an initial value different from zero whena

FIG. 4. The scale factorsx andy for the Kantowski-Sachs mode
(Vk0

,0) whenVL0
,VLM

. For the plotting we putVM0
59 and

VL0
51.5.
1-4
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is null. The following plot shows the zones in 2-dimension
parameter space (VM0

,VL0
) where each model is allowe

~Fig. 3!.
Taking into account the analysis given in@14#, we may

easily derive the qualitative behavior ofy(t), since our equa-
tion ~2.12! is mathematically equivalent to his equation~3!.
Now, going back to Figs. 1 and 2, one can then determine
x(t). The plotting below summarizes the several possibilit
for the three models: Kantowski-Sachs, Bianchi type-I a
Bianchi type-III models, respectively.

The present technology allows us to ‘‘see’’ the epoch
last scattering of radiation at a redshift of about 1000; i
we can actually observe the most distant information that
Universe provides. The high level of isotropy observed fro
the cosmic microwave background radiation~CMBR! @15#
from this epoch to our present time imposes that the
Hubble factorsHa andHb must remain approximately equa
from this epoch to the present. In other words, we must
pose a high isotropy level from the last scattering onwar
in our expressions, i.e.,

DH

Ha
[

Ha2Hb

Ha
,

FIG. 5. The scale factorsx andy for the Kantowski-Sachs mode
(Vk0

,0) when VLM
,VL0

,VLc
. For the plotting we putVM0

52 andVL0
52.

FIG. 6. The scale factorsx andy for the Bianchi type-I model
(Vk0

50) when VL0
,0. For the plotting we putVM0

52 and
VL0

521.
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such thatuDH/Hau!1. From the Cosmic Background Ex
plorer ~COBE! 4-year data@16,17#, we have (s/H)0;1029

and for the last scattering epoch (s/H) ls;1026. At the last
scattering we may still considerHa.Hb.H (H defined
above!.

We computed several numerical integrations, with E
~2.27!, in the following way: we gave values toVM0

and

VL0
and integrated back in time, from now to the last sc

tering epoch. TheseVM0
andVL0

values were chosen suc

that at the last scattering epoch we haduDH/Hu ls[u1
2(dy/dx) lsu51.731026 or (dx/dy) ls5161.731026. To
do this we implemented a 8th order Runge-Kutta meth
@18#.

We concluded that the sumVM0
1VL0

must be close to
unity from above for Kantowski-Sachs model and from b
low for the Bianchi type-III models.1 We summarize in
Table I the result of imposinguDH/Hu ls;1.731026 for
Kantowski-Sachs and Bianchi type-III models, suppos
Ha0

5Hb0
@because (s/H)0;1029].

From Table I we concluded that all combinations ofV0
1VL0

near unity are equally acceptable for reproducing

small anisotropy@(s/H) ls;1026# at the last scattering
Nevertheless, we paid special attention to the values ofV0
;0.3 andVL0

;0.7, since they reproduce a better fit to r

cent observations@19#. We have in this scenariouDH/Hu
,231026 for Kantowski-Sachs and Bianchi type-III un
verses. All these models approach locally an exponenti
expanding state@20# provided the cosmological constant sa
isfiesVL.VLM

.

III. CONCLUSIONS

For the Kantowski-Sachs model (Vk0
,0) ~see Figs. 4

and 5!, we conclude that if the scale factorb(t) starts from
zero, then the scale factora(t) will start from infinity and

1It is obvious that for the Bianchi type-I model (VM0
1VL0

51), with our restrictions, we have alwaysDH/Ha50.

FIG. 7. The scale factorsx and y for Bianchi type-I model
(Vk0

50) when VL0
>0. For the plotting we putVM0

50.5 and
VL0

50.5.
1-5
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decrease afterwards. WhenVL0
,VLM

, b(t) reaches the

maximum value recollapsing after that. Soa(t) will reach a
relative maximum whenb(t) is maximum~see Fig. 4!. After
that, whenb(t)50, a(t) goes to infinity again. WhenVLM

,VL0
,VLc

, the scale factorb(t) grows indefinitely, giving

place to an inflationary scenario. Then,a(t) decreases
reaching a minimum value and growing after that inde
nitely, and becoming proportional tob(t) ~see Fig. 5!. The
initial singularity is of a ‘‘cigar’’ type.

For the Bianchi type-I model (Vk0
50) ~see Figs. 6 and

7!, the scale factorsa(t) and b(t) are proportional or even
equal. Thus, this model turns out to be an isotropic one~ow-
ing to our restrictions! and V01VL0

51. However, when

VL0
,VLM

, a(t) and b(t) reach the maximum and reco

lapse after that. And whenVLM
,VL0

,VLc
, a(t) andb(t)

grow indefinitely after an inflection.
For the Bianchi type-III model (Vk0

.0) ~see Figs. 8 and

9!, whenVL0
,VLM

, b(t) starts from an initial non vanish

ing value @b(t50)5b0.0#, reaching a maximum and re
collapsing after that until reaches the same value fort50.
Also, a(t) has a similar behavior, but starts from zero a
recollapses to zero; nevertheless,a(t) exhibits a relative

FIG. 8. The scale factorsx andy for the Bianchi type-III model
(Vk0

.0) whenVL0
,VLM

. For the plotting we putVM0
51 and

VL0
521.
h

v.

’

12351
-

minimum when b(t) is maximum. When VLM
,VL0

,VLc
, b(t) starts again from a non-vanishing value (b0

.0), growing indefinitely with an inflection. In this case
a(t) starts from zero and grows indefinitely, becoming a
proximately proportional tob(t). So the initial singularity is
of a ‘‘pancake’’ type.

In conclusion, these models undergo isotropization,
coming an asymptotically FLRW universe, except for t
Kantowski-Sachs model (Vk0

,0) with VL0
,VLM

and for

the Bianchi type-III model (Vk0
.0) with VL0

,VLM
. Tak-

ing into account the accuracy of the measurements of an
ropy on the one hand and the fact that we can always ad
the density parameters such thatuV01VL0

21u5d, with d
;1029 on the other, we conclude that these models s
stand as good candidates to describe the obse
Universe.
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FIG. 9. The scale factorsx andy for the Bianchi type-III model
(Vk0

.0) when VLM
,VL0

,VLc
. For the plotting we putVM0

50.2 andVL0
50.4.
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