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Dust-filled axially symmetric universes with a cosmological constant
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Following the recent recognition of a positive value for the vacuum energy density and the realization that
a simple Kantowski-Sachs model might fit classical tests of cosmology, we study the qualitative behavior of
three anisotropic and homogeneous models, Kantowski-Sachs, Bianchi type-l and Bianchi type-Ill universes,
with dust and a cosmological constant, in order to find out which are physically permitted. We find that these
models undergo isotropization up to the point that the observations will not be able to distinguish between
them and the standard model, except for the Kantowski-Sachs mﬁngO) and for the Bianchi type-IlI
model 2y >0) with O, ' smaller than some critical valde, . Even if one imposes that the Universe should
be nearly isotropic since the last scattering epach 1000), meaning that the Universe should have approxi-
mately the same Hubble parameter in all directicctnsidering the COBE 4-year datdhere is still a large
range for the matter density parameter compatible with Kantowski-Sachs and Bianchi type-lll md€gjs if
+Qp 1|=<4, for a very smalls. The Bianchi type-I model becomes exactly isotropic owing to our restric-
tions and we havé,+ QA0=1 in this case. Of course, all these models approach locally an exponential
expanding state provided the cosmological constant- QAM'

PACS numbgs): 98.80.Cq, 04.20.Jb, 98.80.Hw

[. INTRODUCTION take seriously the possibility that the Universe is expanding
anisotropically. Note also that some shear free anisotropic
Over the last five years, the issue of whether or not thergnodels display a Friedmann-Lartra-Robertson-Walker-
is a nonzero value for the vacuum energy density, or cosmdFLRW)-like behavior, as is shown ifL1].
logical constant, has been raised quite often. Indeed, the pos-
sibility of a nonzero cosmological constaft has been en-
tertained several times in the past for theoretical and
observational reasorithe early history ofA as a parameter Taking all this into consideration, we discuss the behavior
in general relativity has been reviewed [, [2], and[3]).  of some homogeneous but anisotropic models with axial
Recent supernova resulf4,5] strongly support a positive Symmetry, filled with a pressureless perfect flddisy and a
and possibly quite large cosmological constant. Even takingion-vanishing cosmological constant. For this, we will re-
the Hubble constant to be in the range 60—75 km/s/Mpc it itrict our study to the metric forms
possible to show6] that the standard model of flat space
W|th a van_|sh|ng cos_mo_log|cal constant is ruled out.Inavery  ds2=—c?dt?+a?(t)dr?+b2(t)[d6>+ f2(6)dp?],
nice review [7] it is argued that postulating an (2.1
Q) ,-dominated model seems to solve a lot of problems at
once. And again, in a quite .recent review on the phySICS“anevith the two scale factora(t) andb(t); k is the curvature
cosmology of the cosmological constant, it is added that “re- : : AP 2
. . . index of the 2-dimensional surfac®”+ f, (6)d¢- and can
cent years have provided the best evidence yet that this ely- . :
. . . . . ake the values+1,0~1, implying f, (6) equal to
sive quantity does play an important dynamical role in the . . . - ;
universe” [8]. sin(f), 6, sinh(@), respectively, giving the following three
On the other hand, if the classical tests of cosmology aréI
applied to a simple Kantowski-Sachs metric and the result§
compared with those obtained for the standard model, th o . .
observations will not be able to distinguish between thes er content is in the form of a perfect .flwd and a cosmologi-
models if the Hubble parameters along the orthogonal direc(-:al term.A, are then as follow12,13;
tions are assumed to be approximately eq@al Indeed, as

Il. GLOBAL BEHAVIOR OF THE A #0 MODELS

ifferent metrics: Kantowski-Sachs, Bianchi type-I, and Bi-
nchi type-Il{12,13.
Einstein equations for the metri2.1), for which the mat-

[10] points out, the number of cosmological solutions which ab b2 kc?
demonstrate exact isotropy well after the big bang origin of 2 2 5+ —+ —2=8WGp+ACZ, (2.2
the Universe is a small fraction of the set of allowable solu- b
tions of cosmological equations. It is therefore prudent to
b b? kc? )
2 -+ —+—=-8rG_+Ac",
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ab p
+—+— —=—87G—-+Ac?
ab c

Q| W
o| o

(2.9

wherep is the matter density anglis the(isotropig pressure
of the fluid. HereG is Newton’s gravitational constant aied

is the speed of light. If we consider a vanishing pressure

(p=0), which is compatible with the present conditions for
the Universe, the last two equations take the form

2b+bz kcz—AZ 2

b gz pr 29

a+b+ab—A2 2.6

atbtabp A (9
and Eqg.(2.5 can easily be integrated to give

b> M; ke A, )

E—F F §C, (7)

whereM, is a constant of integration.

The Hubble parameters corresponding to the scale factors

a(t) andb(t) are defined by

H,=a/a and H,=b/b.
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present timé,. In this way, a number of independent param-
eters have been reduced. Substituting Bd?) into Eq.(2.2)
gives

a

2
M,—M; —+—Ac?ab’
b 3

é: ’

(2.13
A
2\/ M;b—kc?b%+ Eczb4

whereM, is a constant proportional to matter in the Uni-
verse:

(2.19

Using the procedure above, .13 can be rewritten in the
form

M,= 8mwGpab?.

Ha

QP—QM+ZQA=2Hb, (2.1
where
T ab?H2’ '

From Eqg.(2.2) one may define a matter density parameter.

. : . ) ) For this, we introduce the notion of the mean Hubble factor
Using them to introduce the following dimensionless pa-y gch that 31=H +2H,. Also, for these models, the
rameters, in analogy with what is usually done in FLRW ghaar scalao [13] isagiven by ' '

universes, let us define

1
Ml U:_(Ha_Hb) (217}
=Qy, (2.9 V3
b%H3
Thus, Eq.(2.2) may be rewritterj12] as
kc?
- EQk (29) 2
2142 kc
b"Hp 3H2+F=87TGp+o-2+AC2. (2.19
and
As in FLRW universes we call the critical matter dengity
Ac? 0 2.10 whenk=0 andA =0:
—— =), .
3H§ 3H2_0'2
Pe="g-G (2.19

The conservation equatid2.7) can now be rewritten as

(2.11

Now defining the dimensionless variable=b/b, where
bo=Db(ty) is the angular scale factor for the present age of
the Universe, and using E(R.1]) (taken fort=t,), one may
rewrite Eq.(2.7) as

Qu+Q+Q,=1. The matter density is generally defined@s-p/p.; then,

8mGp  8wGp
3H2— g2 2H Hp+H'

(2.20

just like in FLRW models, and such th&=1 whenk=0
andA =0, and which is related t), by

: 1
_ - 2_
y_iHbO\/QMO y 1 +QA0(y 1)+1, (212 Qp
0= H (2.21
where the density parameters, defined previously Hgd 1422
with zero subscript, denote as before these quantities at the Hp
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FIG. 1. Scale factors relation, that is, tkey dependence for the FIG. 2. Scale factors relation, that is, they dependence for the
three models Kantowski-Sachk=1), Bianchi type-l k=0) and  three models Kantowski-Sachk=1), Bianchi type-l k=0) and
Bianchi type-lll (k=—1). We show the behavior of(y) when  Bianchi type-lll (k=—1). We show the behavior of(y) when
0,,<Q,,. Concretely we have for the Kantowski-Sachs model(}, <, <Q, . The particular values for the plotting are for the
Oy, =9 andQ, =1.5; for the Bainchi type-I modely =2 and  Kantowski-Sachs modef)y =2 andQ, =1.5; for the Bainchi
0,,=—1; for the Bainchi type-lll modelQy =1 and Q, type-I model Qy =0.5 andQ, =0.5; for the Bianch type-Ill
=-—1. modeIQMo=0.2 andQA0=O.4.

Although (), is not the matter density parameter, it performsWe Will denote by, andQ, . respectively. The relative
the same important role. We emphasize the fact that if fominimum depends omM0 in the following way[14]: For
one particular timeH,=H, and Q,=1, then, by Egs. (,, <1/2 we have

(2.1, (2.19, and (2.2, 3Q=0Q,=Qy=—0Q,, and if 0 0

<Q,<1 andQy=1, then-Q,=Q, andQ=1. 13

_1)2 _
Introducing another dimensionless varialle a/a,, Eq. Q. = 39'\"0 (Q'V'o 1) _1+1 Q'\"o
(2.13 takes the form A2 02 O,
0
QMO( X ) Hao n 1
1-—|+Q, (—1+xy?)+—
) y| AN [ @~ DHOG — 14 (1= Q) Q12
= Hyp
—(Qu,— 1), (2.24

+Q, (Y- 1)+1

° 1
Y\ Oum| -1
y

and its number of independent parameters was also reduced,
now at the expense of E¢R.15 taken for the present time

(2.22 and forQM0> 1/2 the expression is

3

t:to.
Now, we want to find the time dependencelit) in a 6, €6 ]
qualitative way, starting from Eq2.12. Since the model g 1 3

universe will be defined only wherg?=0, as was previ-
ously done by[14] for FLRW models, the problem is re-

e P 0 & =0 3
duced to finding the zeros gf, with y+0.
There are twd) , values which characterize two zones of B>
distinct behavior for the scale factor Starting with condi- =1 :
tion y=0 one may obtain -t 0 o, 1 2

FIG. 3. The Kantowski-Sachs model corresponds to the region
above the straight Iiner0< 0); the Bianchi type-IIl model corre-
sponds to the region below the straight line(>0); the straight
line represents the region for the Bianchi type-I modéL0(=0).

. . ) The gray zone is physically forbidden because it does not reproduce
If we considerQ, =€, (y) as a function ofy, then this  he actual situation of the Universe. This zone is eliminated by the

function presents a relative minimum and a maximum, whichequationsx=0, (2.24), and(2.25.

(Qu,—1)y—Qy,
Ro™ y3 -y

: (2.23
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TABLE |. Density parameters and relative difference betwéknand H,, for Kantowsky-Sachs and
Bianchi type-III (B 111) models.

Qu, Qy, Qo+ 0y, Q) AH/H,
KS 1 =1.7x10°8 1+5.6x10°° —-1.7x10°8 —-1.6x10°°
KS <2x10°15 1 1+6.7x10°%®  —20x10°%® —1.4x10°°
KS <0.3+7.0x10°° 0.7 1+2.3x10°° —-7.0x10°° —-1.7x10°°
KS 0.3 <0.6+7.0x107° 1+2.3x10°° —-7.0x107° —1.7x107°
B I 1-10710 =9.9x10° 1! 1-33x10°8%  +1.0x10®  +1.3x10°°
B Il =9.8x10° ™ 1-1013 1-6.7x10°1%  +2.0x10°%®  +1.3x10°°
B Il =0.3-10"% 0.7 1-3.3x10°%2  +1.0x10%  +1.8x10°°
B Il 0.3 =0.7-10"1 1-33x10°*? +1.0x10%  +1.8x10°°

0+2m cosmology are not at present sufficiently accurate to distin-
Q)= —30y,c08 —3 ) —(Qu,—1). (229  guish between a FLRW model and the KS model defined in
that paper, with I(-IaOszo), except for small values di.
The relative maximum is done by Taking H, =Hy,  for simplicity, one can then integrate
Eqg. (2.27 and find three different solutions, one for edch
—(Qy —1), (2.26 value. Figures 1 and 2 show the three kinds of behaviors as a
0 result of integration.

o . . The behavior for the Kantowski-Sachs and Bianchi type-
where 6=cos {(y,~ 1)y ]. These expressions are lim- || c4ses depends on i€, value. IfQ, <Q, , there will

iting zones of theQAO,QMO) plane, whergy=0 has three or o 4 maximum value foy,(y,), and since they(y,)=0,

one solutiondfor details seg14]). The (Q,  expression is the slope of the curve=x(y) will be infinite at that point.
also defined fof)y, >1/2, but it has the meaning of a maxi- Specifically, we have(y,,) = + for the Kantowski-Sachs
mum only forQy >1. The(, less than or equal t, ~  model andk(y,,)=—2 for the Bianchi type-lll model, even
imposes a recollapse of the scale fadipwhile greater val-  thoughx(yp) is finite. WhenQ, <Q, <@, , afterx=y

ues produce inflexional behaviors for The ), values =1 is reached we find an almost linear relation between the
greater than or equal @AC are physically “forbidden” be- two scale factorsc andy for the two models, while for the

cause they do not reproduce the present Univésse[14]). Bianchi type-1 model we havg=Yy for the present restric-
Obviously,Q, <Q, always tions. So we see that for the KS model, the scale faafby
! M c ’

L . . starts from infinity ifb(t) starts from zero. For the Bianchi
Although we are considering anisotropic models, Eq. .
. ) . i type-1 model, the scale factors are always proportional or
(2.12 fory as a function ofdy, is mathematically the.same even equal. In this situation we do not have an anisotropic
as Eq.(2) obtained by 14] for the homogeneous and isotro- model; in fact, we can easily prove that this model is isotro-
pic FLRW models. From Eq$2.12 and(2.22 one obtains  pic by a proper reparametrization of the coordinates. For the
the differential equation Bianchi type-lll model, the scale factds(t) never starts
from zero, but has an initial value different from zero wteen
Qp, ( - x
y

dx 2
dy Quy(1=y)+Qp (y3-y)+y

_ 0+4m
QAM——3QMOCO 3

H
+Q (—1+xy2)+ﬁ
Ag Hp, 0, <Qy,

(2.27)

This equation automatically complies with the two con-
servation equation€.11) and (2.15 evaluated aty. There
are some particular values of the parametéls (.2, ) for

which this equation has exact solutions. However, for the : ]
majority of the values of parameters, the solution has only 1k ]
been obtained by numerical integration. : ]
We may admit that at a certain moment of time, which we :
can take as the present tirhg the Hubble parameters along 0 ‘ ) ‘ ‘
the orthogonal directions may be assumed to be approxi- 0.0 0.5 1.0 1.5 2.0
mately equalH,=H,, even though we started with an an-
isotropic geometry. This hypothesis has been considered in FIG. 4. The scale factorsandy for the Kantowski-Sachs model
[9] for the case of a Kantowski-SactS) model. From this (€, <0) whenQ, <Q, . For the plotting we puf2y =9 and
study was derived the conclusion that the classical tests ab, =1.5.

Scale factors

t
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FIG. 7. The scale factorg andy for Bianchi type-l model
(Qko=0) whenQAOBO. For the plotting we quM0=0.5 and
QAOZO'S'

FIG. 5. The scale factorsandy for the Kantowski-Sachs model
(Qk0<0) when QAM<QA0<QAC' For the plotting we puIQM0
=2 andQAo= 2.

;such thatj AH/H,|<1. From the Cosmic Background Ex-
plorer (COBE) 4-year datd16,17], we have ¢/H),~10"°
and for the last scattering epoctr/(H),s~10 6. At the last
scattering we may still considdd,=Hpy=H (H defined
above.

We computed several numerical integrations, with Eq.
82.27), in the following way: we gave values 8y and

is null. The following plot shows the zones in 2-dimensiona
parameter spaceQ(MO,QAO) where each model is allowed
(Fig. 3.

Taking into account the analysis given [ih4], we may
easily derive the qualitative behavioryft), since our equa-
tion (2.12 is mathematically equivalent to his equati(3).
Now, going back to Figs. 1 and 2, one can then determine th ) ey
x(t). The plotting below summarizes the several possibilities >4, @nd integrated back in time, from now to the last scat-
for the three models: Kantowski-Sachs, Bianchi type-l andering epoch. Thes@y and(, values were chosen such
Bianchi type-Ill models, respectively. that at the last scattering epoch we hatH/H|=|1

The present technology allows us to “see” the epoch Of—(dy/dx)|s| =1.7x10"° or (dx/dy),s=1+1.7x10 . To
last scattering of radiation at a redshift of about 1000; i.e.do this we implemented a 8th order Runge-Kutta method
we can actually observe the most distant information that th¢1g].

Universe prov!des. The high level of isot_ropy observed from \We concluded that the sumM0+ QAO must be close to
the cosmic microwave background radiati@®@MBR) [15] ity from above for Kantowski-Sachs model and from be-
from this epoch to our present time imposes that the twq,,,"for the Bianchi type-lll modeld. We summarize in
Hubble factorsH, andH,, must remain approximately equal Tap1e | the result of imposingAH/H|,c~1.7x10"° for

from this_epqch to the present. In other words, we must iMk antowski-Sachs and Bianchi type-lll models, supposing
pose a high isotropy level from the last scattering onwards, —H, [because ¢/H)o~10"9]
) 0 )

in our expressions, i.e., N
P From Table | we concluded that all combinations(®§

AH H,—H, +QAO near unity are equally acceptable for reproducing a
H, H, small anisotropy[(o/H);s~10" ] at the last scattering.
Nevertheless, we paid special attention to the valueQ pf
0,<Q, ~0.3 andQAO~O.7, since they reproduce a better fit to re-
ok ' ' ' ik cent observation$§19]. We have in this scenaripAH/H]|
s ] <2x10°® for Kantowski-Sachs and Bianchi type-IIl uni-
1.or b 7 verses. All these models approach locally an exponentially
25 81_ ] expanding statf20] provided the cosmological constant sat-
R ] isfiesQ >0, .
- F ] M
o 08¢ ]
3 0.45_ _ lll. CONCLUSIONS
0,2: For the Kantowski-Sachs mode{){ <0) (see Figs. 4
0.0 . . . . and 9, we conclude that if the scale factb(t) starts from
0.0 0.5 1.0 1.5 2.0 zero, then the scale factar(t) will start from infinity and

t

FIG. 6. The scale factors andy for the Bianchi type-l model
(Qy,=0) whenQ, <0. For the plotting we put)y =2 and 4t is obvious that for the Bianchi type-l modeK)y + €,
Q,\0= -1. =1), with our restrictions, we have alwaydH/H,=0.
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FIG. 8. The scale factorsandy for the Bianchi type-11l model
(Qk0>0) WhenQA0<_QAM. For the plotting we quMozl and
QA = 1

0

decrease afterwards. WhemAO<QAM, b(t) reaches the

maximum value recollapsing after that. &¢t) will reach a
relative maximum wheib(t) is maximum(see Fig. 4. After
that, whenb(t) =0, a(t) goes to infinity again. WheﬁlAM
<QAO<QAC, the scale factob(t) grows indefinitely, giving
place to an inflationary scenario. Then(t) decreases,

PHYSICAL REVIEW D62 123511

0,<0,<0,

Scale factors

0.0l L . .

0.0 0.5 1.0 1.5
t

FIG. 9. The scale factorsandy for the Bianchi type-I1ll model
(Qko>0) when QAM<QA0<QAC. For the plotting we pth,\,IO
=0.2 andQAO:OA.

minimum when b(t) is maximum. When QAM<QA0
<Q,_, b(t) starts again from a non-vanishing valul(

>0), growing indefinitely with an inflection. In this case,
a(t) starts from zero and grows indefinitely, becoming ap-
proximately proportional td(t). So the initial singularity is
of a “pancake” type.

In conclusion, these models undergo isotropization, be-

reaching a minimum value and growing after that i”deﬁ'coming an asymptotically FLRW universe, except for the

nitely, and becoming proportional to(t) (see Fig. 5. The
initial singularity is of a “cigar” type.
For the Bianchi type-I modeIQkOZO) (see Figs. 6 and

7), the scale factorg(t) andb(t) are proportional or even
equal. Thus, this model turns out to be an isotropic @ve-
ing to our restrictions and o+, =1. However, when

QAO<QAM, a(t) andb(t) reach the maximum and recol-
lapse after that. And wheft, <O, <Q,, a(t) andb(t)

grow indefinitely after an inflection.
For the Bianchi type-Ill model(Q >0) (see Figs. 8 and

9), whenQA0<QAM, b(t) starts from an initial non vanish-
ing value[b(t=0)=by>0], reaching a maximum and re-
collapsing after that until reaches the same valuet fo0.

Kantowski-Sachs modelqko<0) with QA0<QAM and for

the Bianchi type-lll model!(lko>0) with QAO<QAM. Tak-

ing into account the accuracy of the measurements of anisot-
ropy on the one hand and the fact that we can always adjust
the density parameters such they+Q, —1|= 8, with &
~10 % on the other, we conclude that these models still
stand as good candidates to describe the observed
Universe.

ACKNOWLEDGMENTS

The authors thank Alfredo B. Henriques, J&seMimoso
and Paulo Moniz for useful discussions and comments. This
work was supported in part by grants BD 971 and BD/

Also, a(t) has a similar behavior, but starts from zero and11454/97 PRAXIS XXI, from JNICT, and by the CERN/P/

recollapses to zero; neverthelesgt) exhibits a relative

FAE/1164/97 Project.

[1] J. D. North,Measure UniverséClarendon, Oxford, 1965

[2] V. Petrosian,Confrontation of Cosmological Theories with
Obsvertational Data edited by M.S. LongaifReidel, Dor-
drecht, 1974

[3]J. E. Gunn and B. M. Tinsley, Naturé.ondon 275 454
(1975.

[4] S. Perlmutteret al, Nature(London 391, 51 (1998.

[5] A. G. Riesset al., Astron. J.116, 1009(1998.

[6] M. Roos and S. M. Harun-or Rashid, Astron. Astroph329,
L17 (1998.

[7] S. M. Carroll, W. H. Press, and E. L. Turner, Annu. Rev.

Astron. Astrophys30, 499 (1992.

[8]S. M. Carroll, “The Cosmological Constant,”

astro-ph/0004075.
[9] A. B. Henriques, Astrophys. Space S2B5 129 (1996.

[10] C. B. Collins and S. W. Hawking, Mon. Not. R. Astron. Soc.
162 307 (1973.

[11] JoseP. Mimoso and Paulo Crawford, Class. Quantum Grav.
10, 315(1993.

[12] A. B. Burd and D. Barrow, Nucl. Phy$83308 929 (1988.

[13] S. Byland and D. Scialom, Phys. Rev.97, 6065(1998.

[14] M. Moles, Astrophys. J382 369 (1991J).

[15] Peter Coles and F. Lucchifosmology—The Origin and Evo-
lution of Cosmic StructuréWiley, Chichester, England, 1995
p. 91.

[16] E. F. Bunn, P. G. Ferreira, and J. Silk, Phys. Rev. Léf.

123511-6



DUST-FILLED AXIALLY SYMMETRIC UNIVERSES . .. PHYSICAL REVIEW D 62 123511

2883(1996. [19] Michael S. Turner, inProceedings of Type la Supernovae:
[17] A. Kogut, G. Hinshaw, and A. J. Banday, Phys. Rev5H Theory and CosmologyChicago, 1998, edited by Jens Nie-

1901(1997. meyer and James Trurg@ambridge University Press, Cam-
[18] Ernst Hairer, S. P. Norsett, and G. Wann®olving Ordinary bridge, UK, in presg astro-ph/9904049.

Differential Equations | 2nd revised ed(Springer-Verlag, [20] P. Moniz, Phys. Rev. 217, 4315(1993.
Berlin, 1993.

123511-7



